Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.

Identifieur interne : 001791 ( Main/Exploration ); précédent : 001790; suivant : 001792

Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.

Auteurs : Jenny C-Y Chen [États-Unis] ; Ted Powers

Source :

RBID : pubmed:16397762

Descripteurs français

English descriptors

Abstract

The target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes). We show that TOR-dependent control of LYS gene expression occurs independently from previously identified LYS gene regulators and is instead coupled to cAMP-regulated protein kinase A (PKA). Additional genome-wide expression analyses reveal that TOR and PKA coregulate LYS gene expression in a pattern that is remarkably similar to genes within the ribosomal protein and "Ribi" regulon genes required for ribosome biogenesis. Moreover, this pattern of coregulation is distinct from other clusters of TOR/PKA coregulated genes, which includes genes involved in fermentation as well as aerobic respiration, suggesting that control of gene expression by TOR and PKA involves multiple modes of crosstalk. Our results underscore how multiple signaling pathways, general growth conditions, as well as the availability of specific nutrients contribute to the maintenance of appropriate patterns of gene activity in yeast.

DOI: 10.1007/s00294-005-0055-9
PubMed: 16397762


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.</title>
<author>
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16397762</idno>
<idno type="pmid">16397762</idno>
<idno type="doi">10.1007/s00294-005-0055-9</idno>
<idno type="wicri:Area/Main/Corpus">001804</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001804</idno>
<idno type="wicri:Area/Main/Curation">001804</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001804</idno>
<idno type="wicri:Area/Main/Exploration">001804</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.</title>
<author>
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</author>
</analytic>
<series>
<title level="j">Current genetics</title>
<idno type="ISSN">0172-8083</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Lysine (biosynthesis)</term>
<term>Lysine (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Protein-Serine-Threonine Kinases (physiology)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases (MeSH)</term>
<term>Lysine (biosynthèse)</term>
<term>Lysine (génétique)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protein-Serine-Threonine Kinases (physiologie)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Lysine</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lysine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Lysine</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes). We show that TOR-dependent control of LYS gene expression occurs independently from previously identified LYS gene regulators and is instead coupled to cAMP-regulated protein kinase A (PKA). Additional genome-wide expression analyses reveal that TOR and PKA coregulate LYS gene expression in a pattern that is remarkably similar to genes within the ribosomal protein and "Ribi" regulon genes required for ribosome biogenesis. Moreover, this pattern of coregulation is distinct from other clusters of TOR/PKA coregulated genes, which includes genes involved in fermentation as well as aerobic respiration, suggesting that control of gene expression by TOR and PKA involves multiple modes of crosstalk. Our results underscore how multiple signaling pathways, general growth conditions, as well as the availability of specific nutrients contribute to the maintenance of appropriate patterns of gene activity in yeast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16397762</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0172-8083</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>49</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Current genetics</Title>
<ISOAbbreviation>Curr Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>281-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin (TOR) signaling pathway is an essential regulator of cell growth in eukaryotic cells. In Saccharomyces cerevisiae, TOR controls the expression of many genes involved in a wide array of distinct nutrient-responsive metabolic pathways. By exploring the TOR pathway under different growth conditions, we have identified novel TOR-regulated genes, including genes required for branched-chain amino acid biosynthesis as well as lysine biosynthesis (LYS genes). We show that TOR-dependent control of LYS gene expression occurs independently from previously identified LYS gene regulators and is instead coupled to cAMP-regulated protein kinase A (PKA). Additional genome-wide expression analyses reveal that TOR and PKA coregulate LYS gene expression in a pattern that is remarkably similar to genes within the ribosomal protein and "Ribi" regulon genes required for ribosome biogenesis. Moreover, this pattern of coregulation is distinct from other clusters of TOR/PKA coregulated genes, which includes genes involved in fermentation as well as aerobic respiration, suggesting that control of gene expression by TOR and PKA involves multiple modes of crosstalk. Our results underscore how multiple signaling pathways, general growth conditions, as well as the availability of specific nutrients contribute to the maintenance of appropriate patterns of gene activity in yeast.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jenny C-Y</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Powers</LastName>
<ForeName>Ted</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Curr Genet</MedlineTA>
<NlmUniqueID>8004904</NlmUniqueID>
<ISSNLinking>0172-8083</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16397762</ArticleId>
<ArticleId IdType="doi">10.1007/s00294-005-0055-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2001 May;158(1):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Aug 24;62(4):631-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2167175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2000 Nov 13;151(4):863-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2004 Mar;11(3):295-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10 ):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Jul 1;17(13):3556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Sep;33(5):904-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10476026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Mar;14(3):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8114723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):706-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 5;279(45):46527-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jun;15(6):3187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7760815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jan 15;21(1-2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Mar 10;296(5):1205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2003 Dec 16;16(1):107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14570984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Jun;12(6):2431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8508768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Nov;13(14 ):1337-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9392078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Feb;1(1):22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17(2):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(9):R62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Apr 9;14(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15068799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1999 Apr;261(1):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10103047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Feb;55(3):862-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Aug;143 ( Pt 8):2627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9274016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Aug;12(2):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14536080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1999 Nov;24(11):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Dec;66(4):579-91, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2002 May;2(2):183-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12 (6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(24):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 23;271(34):20242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Feb;7(2):813-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3547083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):1061-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Oct;14(10):6411-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 20;279(8):7072-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Oct 18;111(2):155-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Nov 17;22(22):6045-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14609951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:53-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jan 30;14(2):115-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9483801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Mar 5;12(5):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Aug;12(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14536067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Dec;1(6):978-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138498</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Powers, Ted" sort="Powers, Ted" uniqKey="Powers T" first="Ted" last="Powers">Ted Powers</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Chen, Jenny C Y" sort="Chen, Jenny C Y" uniqKey="Chen J" first="Jenny C-Y" last="Chen">Jenny C-Y Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001791 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001791 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16397762
   |texte=   Coordinate regulation of multiple and distinct biosynthetic pathways by TOR and PKA kinases in S. cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16397762" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020